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Disclaimer

* The information in this document is believed to accurately describe the technologies
described herein and are meant to clarify and illustrate typical situations, which must be
appropriately adapted to individual circumstances. These materials were prepared to be
used in conjunction with a free, educational program and are not intended to provide
legal advice or establish legal standards of reasonable behavior. Neither Pacific Gas and
Electric Company (PG&E) nor any of its employees and agents:

* Makes any written or oral warranty, expressed or implied, including, but not limited to,
those concerning merchantability or fitness for a particular purpose;

* Assumes any legal liability or responsibility for the accuracy or completeness of any
information, apparatus, product, process, method, or policy contained herein; or

* Represents that its use would not infringe any privately owned rights, including, but not
limited to, patents, trademarks, or copyrights.



Copyright Materials

Some or all of this presentation may be protected by US and
International Copyright laws. Reproduction, distribution,
display and use of the presentation without written
permission of the copyright holder is prohibited



Learning Objectives — Class Series

1. Attendees will be able to discuss some of the issues and
opportunities associated with applying heat pumps as a

source of heat for buildings as we move towards
electrification



Learning Objectives — Class Series

2. Attendees will be able to name the common heat pump
types and describe their general characteristics (ground
source, air source, water source, variable flow
refrigeration, etc.)



Learning Objectives — Class Series

3. Attendees will be able to discuss ventilation strategies that
can be applied in conjunction with heat pump systems and
how they can be integrated with the heat pumps and the
zones they serve



Learning Objectives — Class Series

4. Attendees will be able to discuss the design and
commissioning issues associated with applying heat
pumps to new construction and retrofit projects



Learning Objectives — Class Series

5. Attendees will be able to identify existing building
commissioning issues and opportunities associated with
heat pumps and heat pump systems



Learning Objectives — Today’s Session

1. Identify common design, construction, and commissioning
Issues associated with applying heat pumps to new
construction projects



Learning Objectives — Today’s Session

2. Recognize that the design and performance criteria
associated with a system utilizing heat pumps will vary with
the nature of the technology used (ground source, water
source, etc.) and that integrating the heat pump with the
auxiliary systems serving it, the loads it serves and the use
patterns for the facility is critical to over-all success.



Learning Objectives — Today’s Session

3. ldentify the key heat pump system performance criteria
that should be targeted by the pre-functional checks and
functional tests specified for the commissioning process
and if natural or forced response testing techniques should
be applied to verify that the design intent has been

achieved



Learning Objectives — Today’s Session

4. Create a point list for the DDC system that includes the
points needed to perform ongoing commissioning of the
heat pump systems in addition to controlling them



Learning Objectives — Today’s Session

5. Recognize the value of trend data for evaluating heat pump
system performance to ensure that the design intent has
been achieved



Agenda

Introduction

. The New Construction (NCx) Commissioning Process
Key Cx Skills

NCx Functional Testing

Potpourri

. Case Study
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Introduction

A Bit About Me
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A Bit About Me

| iIntended to be an aircraft
maintenance engineer

I’'m doing something totally
different




A Bit About Me

 HVAC field technician

« Control system designer
 HVAC designer

« MCC Powers system engineer oW

* Murphy Company controls and &l L
start-up engineer ORI [, P G Wt

+ Project engineer S Ry B e

« Wafer fab facilities engineer and LA | oo A L =
system owner hs ‘f}.ﬂ ‘,.},‘3.,; Y= =l

* A happily married PECI ' G | |
technical support engineer and ot Ol - Ot SR ERRES
trainer -

+ FDE Senior Engineer %




've Had Great Mentors Along the Way




Bill Coad’s Thoughts on Energy Conservation

“... that is to practice our profession with
an emphasis upon our responsibility to
protect the long-range interests of the
society we serve and, specifically, to
incorporate the ethics of energy
conservation and environmental
preservation in everything we do.”

Energy Conservation is an Ethic
ASHRAE Journal, vol. 42, no. 7, p. 16-21

PDF available at
https://tinyurl.com/EnergyConservationEthic




My Most Important Lesson

It’s all about the load profile
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@ My Sites
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Engineering lessons from the field

Buildings are Talking To Us ...

Creating a Third Axis In Excel

Posted on April 19, 2019

One of the challenges that came up when I was creating the time series graph of a 9,000
ton chiller plant load profile that I show in my previous post was that I wanted to plot data
series that had numbers in them with very large differences in the order of magnitude.
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Brother Placid Sellers; Saint Vincent Archabbey. Latrobe, Pennsylvania

Buildings are Talking to Us

We Just Need to Learn How to Listen

My Goal

Welcome o A Field Perspective on Engineering’'s commissioning resource s \
website. For those who don't know me from my blog or some other venue, | Facﬂlw Dynamlcs
am a senior engineer for a company named Facility Dynamics Engineering

a.k.a FDE, which specializes in commissioning, confrol system design, and ENGINEERING

http //WWW aV8 rd as. Com/ some forensic engineering work.
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Key Commissioning Skills




Key Cx Skills

1. Be able to benchmark and perform
utility analysis

2. Be able to scope a facility for
obvious indicators of opportunity

3. Be familiar with fundamental
principles and building systems

4. Understand and apply the system
concept

5. Be able to perform data logging
and trend analysis

8.

9.

Be familiar with functional testing
techniques

Be familiar with data
analysis techniques

Be familiar with basic HVAC and
energy calculations

Be familiar with cost/benefit and
return on investment calculations

10. Be familiar with implementation

strategies and techniques

i .::- : 'l. .
https://tinyurl.com/KeySkillsBlogPost [w]



https://tinyurl.com/KeySkillsBlogPost

New Construction
Commissioning Process




Dictionary definition

Webster
« Com-mis-sion g
* ko miSHan
* Verb; Gerund or present participle: Commissioning

1. Give an order for or authorize the production of (something such as a
building, equipment, or work of art).

. The portrait was commissioned by his widow in 1792
. synonyms: order, authorize, bespeak

2. Bring (something newly produced, such as a factory or machine) into
working condition.

. We had a few hiccups getting the heating equipment commissioned



An analogy to a ship’s sea
trlals or. “shake-down”

M Image-courtesy.www.public-domain-image.com



Industry Definition

« Commissioning is a systematic process of ensuring that all building
systems perform interactively according to the contract documents,
the design intent and the Owner’s operational needs

« Begins in predesign
« Documents the design intent

Continues through construction, acceptance, the warranty period, and
through the building’s life cycle

Includes functional testing
Includes training
Documents performance



Commissioning comes

in a Number of “Flavors” Ongoing
operation &

commissioning

Technical
steps and
techniques

construction commissioning
commissioning Design Intent =——>



New Construction Commissioning
Phases

* Programming
* Design Phase
« Design Review

« Develop Cx Specifications
« Develop Draft Pre-functional Checks and Functional Tests

» Construction Phase
« Submittal Review
» Construction Observation
* Functional Testing



Functional Testing

Pre-functional Checks
* Generally static vs. dynamic

 Validate equipment and system
readiness for testing

* |s everything there?

« Control system point to point
checks

» Connections secure
» Accessibility

 Standard manufacturer’s
requirements

Functional Tests

* Generally dynamic

* Forced response and natural
response

« Start at component level and
build to system level

* Verify integration
« Components with the
system

« Systems with other systems
» Systems with the facility



New Construction Commissioning
Phases

* Programming
* Design Phase
* Design Review

« Develop Cx Specifications
« Develop Draft Pre-functional Checks and Functional Tests

» Construction Phase

e Submittal Review
Construction Observation
Functional Testing
Warranty
Ongoing Commissioning



The NCx Commissioning Process and Project Timeline



Typical New Construction Commissioning Activity

600,000 sq.ft. High Rise Basis
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Typical New Construction Commissioning Activity

600,000 sq.ft. High Rise Basis
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Recall That There Are Grades of Heat

Heat

* Energy in motion; the amount of energy flowing from
one object to another due to their temperature
difference

* There are grades of heat

* High — Temperature greater that 650°C/1,202°F

* Medium — Temperatures between 200°C and
650°C/392°F and 1,202°F

* Low — Temperatures below 200°C/392°F
* Low grade heat is harder to make use of



Recall How Buildings Use Heat

Application

Heating
Preheat

Reheat

Cooling
Humidification
Power Generation



Recall Heat Pump Targets

Application

* Heating

* Preheat
 Reheat

« Cooling

* Humidification
 Power Generation

Electrification
Target

Heat Pump
Target



Recall How Lift Impacts Heat Pump
Performance

Big source to sink temperature
differentials mean: e

1,1,1,2-tetrafluorcethane
Helmholtz Energy Equation of State

* More energy expended per Btu
Of energy moved Data generated with REFPROP 9.1
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Saturated l'
Liquid |

Enthalpy, Btu/lb,,




Recall How Lift Impacts Heat Pump
Performance

Big source to sink temperature R

R134a

differentials mean:

* For air source heat pumps, the
ease of recovering energy
drops off as the need for
recovered energy increases

Enthalpy, Btu/lb,,




The Ideal Heat Pump Application

Energy Available to Recover from Facility Internal Gains
And/Or
An Alternative Energy Source that is not Extremely Cold
And

Loads that can Use Low Grade Heat



Considering a Water Source Heat Pump
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Thinking Through How It Works
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Thinking Through How It Worl e

water loop (air source) for zones
that need cooling and extract
heat from the water loop (water

____________________ CAmR ¥ [ =
T =~ -3 source) for zones that need
g L] i
P Lps L heating
[
’ Normally Closed
I, ] Service Bypass
j ST
! FEEXFXE
! Forced braft
,’ Cooling Tower : : ) ¢ ) ¢ b ¢
I /
1
@ —b—— 000 .. o DD . FED =
I Tu T
‘\ & Normally Closed i |IM'I e b i l " A J;”-”-HH M a <
=7 Service Bypass | i i L T..
11 ' ‘ '
|' |‘ Zone Heat Pump Zone Heat Pump Zone Heat Pump
[ I !_| !‘l Plate and Frame Heating Mode Heating Mode Cooling Mode
v Heat Exchanger
1Y N\ g
VoM A Zt A s
A Y L e L
pN ~.e s Redundant Redundant »
____ Pumps Pumps X
& &
2022-11-16

Ds



-

Forced Draft

]

,’ Cooling Tower >
1

1

1

\

-

Thinking Through How It Works
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Thinking Through How It Works
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Thinking Through How It Waorks

A steam to water heat exchanger
provides a way to add heat to the
loop if more heat is required by
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A Question For You

https://tinyurl.com/HeatPumpD3WS
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https://tinyurl.com/HeatPumpD3WSLoopQ1
https://tinyurl.com/HeatPumpD3WSLoopQ1

Perfection; Heat Rejecte
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There Are A Lot of Ways to Do This

; 2 ayEar' h—Moon
Configsys - [(ZA/I HVAC Eng Ineers ) X KCIimate X KBuiIdingType} + aZSU:_Satum
Where:
fonfi,. = 1he number of potential HVAC system configurations
>, HVAC Engineers = The number of HVAC engineers
K. jimate = Climate coefficient; adjusts for the climate type at the system
location
wuigngrype = BUIlMING type coefficient; adjusts for the building type that the
system serves
oY, : :
—Larth-Moon . Planetary alignment compensation factor
6Z.Sun75atum
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Atmospheric Sink and Fossil Fuel Source
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Ground Water Sink and Source
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Ground Water Sink and Source
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Ground Water Sink and Source
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A Large Body of Water Sink and Source
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Filtered Water Bay Tank

San Francisco Bay
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Bottom Line: There Has to be Heat to
Recover
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Consider This Washington DC Site

gt e :
i = Water source heat pump loop serving

; the penthouse of a historic building
* Long, thin aspect ratio
= » Large, single pane, double hung windows




Consider This Washington DC Site

Open office concept

» Design intent is for flexible zoning to
accommodate “churn”

» 2-3 enclosed conference spaces

* DOAS system provides ventilation to an
under floor plenum

« Heat pumps located in the under floor
plenum and ducted to outlets at the
window sills
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300,000 -

Loads at 14°F

85 hours at or below this condition
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Heatin

Cooling , Negative

Load, Btu/hr, Positive
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300,000
Loads at 37°F
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Loads at 47 °F
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300,000

Loads at 57°F

1,563 Hours between 47 °F and 57 °F
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Loads at 72°F
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300,000

Loads at 94°F
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300,000

Loads at 94°F
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Bottom Line

There has to be
heat to pump for a
heat pump to
recover energy
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The Ideal Heat Pump Application

Energy Available to Recover from Facility Internal Gains
And/Or
An Alternative Energy Source that is not Extremely Cold
And

Loads that can Use Low Grade Heat



Heat Pump Application
Checklist

Energy Available to Recover
Warm Alternative Energy Source

Loads that can Use Low Grade Heat
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A Question For You
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Methods for Serving Heating Loads

Radiation and Use Coils to Heat Pure Radiation
Convection Air




Radiation and Convection

Fluid in the element needs to be significantly
warmer than the desired space temperature
to deliver meaningful heat
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Radiation and Convection

Fluid in the element needs to be significantly
warmer than the desired space temperature
to deliver meaningful heat
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Using Coils to Heat Air

Recall the Definition of Heating
A process that adds energy

* For a space, this is often accomplished by circulating
air through it at a temperature above the required set
point

* For a fluid stream, this is often accomplished by
passing it over a surface that is above the required
supply temperature



Using Coils to Heat Air

Recall the Definition of Preheat

» A process that heats a fluid stream to prepare it for a
subsequent HVAC process

* In air handling systems, this process is used to raise
subfreezing air above freezing to protect water filled
elements down stream from damage due to freezing



Using Coils to Heat Air

Recall the Definition of Reheat

* A process that uses heat to warm air being delivered to a
zone to prevent over cooling

* The temperature of the air was set by the need to hit a
dehumidification target, or

* By the requirements of another zone
* Thus, it can not be raised at the central system

 The volume can not be reduced because it has been set
to assure proper ventilation (contaminant control)



Using Coils to Heat Air

Fluid in the coil needs to be warmer than the
desired air temperature

 Typical preheat coil leaving air
temperature requirements — 45 — 65°F




Using Colls to Heat Air

'Coil Performance at Different Entering Water

Temperatures Fluid in the coll needs to be warmer than the
Item el desired air temperature

Warm Up | Preheat,

o * Typical preheat coil leaving air
Al flow (SCFM) sozoe | 22306 temperature requirements — 45 — 65°F

Total capacity (MBH) 585.1 399.0
Entering dry bulb (°F) 620 340
Leaving dry bulb (°F) 86.2 50.5
Face velocity (ft/min) 465 465
Entering fluid temp. (°F) 170.0 110.0
Leaving fluid temp. (°F) 130.0 83.0
Fluid flow rate (GPM) 29.8 29.8
Fluid velocity (ft/s) 2.71 2.71
Fluid pressure drop (ft of water) 44 47
Tube Diameter 5/8 5/8
Fin height (in) 720 720
Fin length (in) 96.0 96.0
Face area (ft2) 48.00 48.00
Rows 1 1
Fin spacing (fins/in) 9 9




Using Coils to Heat Air

Fluid in the coil needs to be warmer than the
desired air temperature

 Typical preheat coil leaving air
temperature requirements — 45 — 65°F

Heat Pump Application
Checklist

Energy Available to Recover

Warm Alternative Energy Source

Loads that can Use Low Grade Heat v



Using Coils to Heat Air

Fluid in the coil needs to be warmer than the
desired air temperature

 Typical preheat coil leaving air
temperature requirements — 45 — 65°F

* Typical reheat colil leaving air temperature
requirements — 55 — 68°F for reheat




Using Colls to Heat Air

Coil Performance at
Different Entering Water
Temperatures

Item

Air flow (SCFM)

Total capacity (MBH)
Entering dry bulb (°F)
Leaving dry bulb (°F)
Face velocity (ft/min)
Entering fluid temp. (°F)

Leaving fluid temp. (°F)

Fluid flow rate (GPM)

Fluid velocity (ft/s)

Fluid pressure drop (ft of water)
Tube Diameter

Fin height (in)
Fin length (in)
Face area (ft*)
Rows

Fin spacing (fins/in)

Design
Condition

1185
50.9
53.0
927
249
1700
156.5
7.7
4.20
6.1
5/8
18.0
38.0
4.75
1
2

Reheat
110°F 40°F
Delta t

1185
185
53.0
674
249
110.0
90.0
19
102
04
5/8
18.0
38.0
475
1
9

Fluid in the coil needs to be warmer than the
desired air temperature

» Typical preheat coil leaving air
temperature requirements — 45 — 65°F

 Typical reheat coll leaving air temperature
requirements — 55 — 68°F for reheat



Using Colls to Heat Air

,Coil Performance at
Different Entering Water
Temperatures

Item

Air flow (SCFM)

Total capacity (MBH)
Entering dry bulb (°F)
Leaving dry bulb (°F)
Face velocity (ft/min)
Entering fluid temp. (°F)

Leaving fluid temp. (°F)

Fluid flow rate (GPM)

Fluid velocity (f1/s)

Fluid pressure drop (ft of water)
Tube Diameter

Fin height (in)

Fin length (in)

Face area (ft?)
Rows

Fin spacing (fins/in)

Reheat

Design
Condition

1185
50.9
53.0
92.7
249
170.0
156.5
7.7
4.20
6.1
5/8
18.0
380
475
1
9

110°F,
Design gpm

1185
24.6
53.0
721
249
110.0
103.6
7.7
4.20
6.6
5/8
18.0
380
475
1
9

Fluid in the coil needs to be warmer than the
desired air temperature

» Typical preheat coil leaving air
temperature requirements — 45 — 65°F

 Typical reheat coll leaving air temperature
requirements — 55 — 68°F for reheat



Using Coils to Heat Air

Fluid in the coil needs to be warmer than the
desired air temperature

 Typical preheat coil leaving air
temperature requirements — 45 — 65°F

* Typical reheat colil leaving air temperature
requirements — 55 — 68°F for reheat

Heat Pump Application
Checklist

Energy Available to Recover

Warm Alternative Energy Source

Loads that can Use Low Grade Heat v



Using Coils to Heat Air

Fluid in the coil needs to be warmer than the
desired air temperature

 Typical preheat coil leaving air
temperature requirements — 45 — 65°F

* Typical reheat colil leaving air temperature
requirements — 55 — 68°F for reheat

 Typical reheat coll leaving air temperature
requirements — 95 — 115°F for space heat




Using Colls to Heat Air

Coil Performance at
Different Entering Water
Temperatures

Item

Air flow (SCFM)

Total capacity (MBH)
Entering dry bulb (°F)
Leaving dry bulb (°F)
Face velocity (ft/min)
Entering fluid temp. (°F)

Leaving fluid temp. (°F)

Fluid flow rate (GPM)

Fluid velocity (ft/s)

Fluid pressure drop (ft of water)
Tube Diameter

Fin height (in)
Fin length (in)
Face area (ft*)
Rows

Fin spacing (fins/in)

Design
Condition

1185
50.9
53.0
927
249
1700
156.5
7.7
4.20
6.1
5/8
18.0
38.0
4.75
1
2

Reheat
110°F 40°F
Delta t

1185
185
53.0
674
249
110.0
90.0
19
102
04
5/8
18.0
38.0
475
1
9

Fluid in the coil needs to be warmer than the
desired air temperature

» Typical preheat coil leaving air
temperature requirements — 45 — 65°F

 Typical reheat coll leaving air temperature
requirements — 55 — 68°F for reheat



Using Coils to Heat Air

Fluid in the coil needs to be warmer than the
desired air temperature

 Typical preheat coil leaving air
temperature requirements — 45 — 65°F

* Typical reheat colil leaving air temperature
requirements — 55 — 68°F for reheat

* Typical reheat coil leaving air temperature
requirements — 95 — 115°F for space heat

Heat Pump Application
Checklist

Energy Available to Recover

Warm Alternative Energy Source

Loads that can Use Low Grade Heat *



Pure Radiation

Radiant slabs typically need to be held at
85°F or less

« Warmer temperatures cause comfort
problems

« Warmer temperatures can cause issues
with floor coverings and finishes




Radiant slabs typically need to be held at
85°F or less

« Warmer temperatures cause comfort
problems

« Warmer temperatures can cause issues
with floor coverings and finishes

Heat Pump Application
Checklist

Energy Available to Recover

Warm Alternative Energy Source

Loads that can Use Low Grade Heat v~



How Much Heat Can a Heat Pump Pump
if a Heat Pump Could Pump Heat?




More Specifically, How Hot Can We Get?

62°F with some outside the box
thinking and conventional pumps,
pipes and loads




More Specifically, How Hot Can We Get?

62°F with some outside the box
thinking and conventional pumps,
pipes and loads

: Heat Pump Application
Checklist

Energy Available to Recover

cool water
Warm Alternative Energy Source

Loads that can Use Low Grade Heat



More Specifically, How Hot Can We Get?

90°F with plate and frame heat
exchangers recovering heat from the
condenser water system at
conventional condenser water
temperatures (85°F from the towers,
95°F to the towers)




More Specifically, How Hot Can We Get?

90°F with plate and frame heat
exchangers recovering heat from the
condenser water system at
conventional condenser water
temperatures (85°F from the towers,
95°F to the towers)

Heat Pump Application
Checklist

Energy Available to Recover

Warm Alternative Energy Source

./ Loads that can Use Low Grade Heat



More Specifically, How Hot Can We Get?

120 - 140°F with conventional water

source heat pumps using ground
water or a large body of water as the

source

Google Earth



More Specifically, How Hot Can We Get?

300-0"

S\ VERTICAL WELL DETAIL

Google Earth

120 - 140°F with conventional water

source heat pumps using ground
water or a large body of water as the

source

Heat Pump Application
Checklist

Energy Available to Recover
Warm Alternative Energy Source

Loads that can Use Low Grade Heat



More Specifically, How Hot Can We Get?

95 - 115°F with air source Variable

s 3 I Refrigeration Flow (VRF) systems
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Typical Branch Controller




More Specifically, How Hot Can We Get?

95 - 115°F with air source Variable
Refrigeration Flow (VRF) systems

Heat Pump Application
Checklist

Energy Available to Recover

v

Warm Alternative Energy Source

Loads that can Use Low Grade Heat



More Specifically, How Hot Can We Get?

115 - 165 °F with a conventional
heat recovery chiller
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Taking a Look at a Heat
Recover Chiller
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More Specifically, How Hot Can We Get?

115 - 165 °F with a conventional
heat recovery chiller

Heat Pump Application
Checklist

Energy Available to Recover

Warm Alternative Energy Source

Loads that can Use Low Grade Heat




More Specifically, How Hot Can We Get?

Trane CVHH Cascade Heat Pump

SC°

s

Production Unit: CVHH

High Temp Unit- CVHH Booster

+ Upto 180F Leaving Hot Water Capable
*  R&14A for very high temp (180F)

+ R1233zd(E) for high temp (155F)

» Cupro-Nickel fubes = 150F

» Capacity Range: 11,000to 35,000 MBH

Trane Cascade Advantages
« System design flexibility
« Operates under uneven cooling and heating loads
« High reliability and standard parts
« Easy integration with BAS
« Pairing with an existing cooling chiller
* Low GWP
+ GWP=1for R12 (E)
+ GWP=2fo

Low Temp Unit- Any WC Chiller or HP
« Standard production chiller
« Configuration flexibility
* HTRC unit shown for uneven loading
= Can be an existing unit in your facility

180°F by cascading conventional
chillers

(Image courtesy Dan Driver; DDriver@ Trane,com)



Trane CVHH Cascade Heat Pump

BAS CVHH Booster Ha gh Temp Unit- CVHH Booster

Up to 180F Leaving Hot Water Capable
RoT14A for very high femp (180F)

R1233zd(E) for high temp (135F)
Cupro-Nickel tubes = 150F
C-apacity Range: 11,0000 35,000 MBH

Trane Cascade Advantages

« System design flexibility

« Qperates under uneven cooling and heating loads
« High reliability and standard parts

Easy integration with BAS

« Pairing with an existing cooling chiller

« Low GWP

« GWP=1for R1233zd(E)
« GWP=2 for R514A

Low Temp Unit- Any WC Chiller or HP

standard production chiller

= Configuration flexibility
e TRANE + HIRC unit shown for uneven loading

Can be an existing unit in your facility

f Trocer™
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Production Unit: CVHH




More Specifically, How Hot Can We Get?

Trane CVHH Cascade Heat Pump 1 80 °© F by Cascad | ng Conve nt|on al
High Temp Unit- QVHH Booster .
L Refiator ey () chillers
* R1233zd(E) for high temp (155F)

» Cupro-Nickel fubes = 150F
» Capacity Range: 11,000to 35,000 MBH

Trane Cascade Advantages
« System design flexibility
« Operates under uneven cooling and heating loads

= High reliability and standard parts H t P rT] A | I t-
« Easy integration with BAS ea u p p p I Ca IO n
« Pairing with an existing cooling chiller .
* Low GWP
Checklist
+ GWP=2for R514A
Low Temp Unit- Any WC Chiller or HP
« Standard production chiller H
«  Configuration flexibility Energy Available to Recover
* HTRC unit shown for uneven loading
= Can be an existing unit in your facility

Warm Alternative Energy Source

Loads that can Use Low Grade Heat

(Image courtesy Dan Driver; DDriver@ Trane,com)



More Specifically, How Hot Can We Get?

Water to Water Heat Pump Portfolio 25OOF Wlth emerglng teChnOIOgy
» Reciprocating chillers

medium to high

heati . .
Lo « Approximately 150-200 ton capacity
range

5 2100 2450 2800 3150 kw
Capacity
1

(Image courtesy Dan Driver; DDriver@ Trane,com)



Water to Water Heat Pump Portfolio
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More Specifically, How Hot Can We Get?

Water to Water Heat Pump Portfolio 25OOF Wlth emerglng teChnOIOgy
» Reciprocating chillers

medium to high

heating . Approximately 150-200 ton capacity

temperature

range

Heat Pump Application
175 350 700 1050 1400 1750 2100 2450 2800 3150 CheCkllst

Capacity
1

Energy Available to Recover
Warm Alternative Energy Source

Loads that can Use Low Grade Heat

(Image courtesy Dan Driver; DDriver@ Trane,com)



Another Question For You

https://tinyurl.com/HeatPumpD3WSLoopQ3-1
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https://tinyurl.com/HeatPumpD3WSLoopQ3-1

System and Service Sensor Features
Type Accuracy Alarms Trending
Limit Waming Samples Commissioning® Dperating®

Hi Lo Hi Lo Time® Local®brehive Time® Local® brehive®

Safety Interlocks (Hardwired to shut down the system. Safeties shall funciton no matter what position the equipments Hand-Off-Auto, Inverter-Bypass, or other selector switches are in)



https://fdec-my.sharepoint.com/personal/dsellers_facilitydynamics_com/Documents/00%20-%20FDE%20Projects/PEC%20-%20Heat%20Pump%20Series/2023-10/Day%203%20-%20New%20Construction/Point%20List%20Exercise.xlsx

Heat Pump Application Bottom Lines

1. There has to be heat to recover

2. Design phase is the time to recognize the impacts of load
profile

3. Design phase is the time to understand the equipment
performance characteristics

4. Design phase is the time to think about how you will operate
the system and ensure the persistence of any energy
efficiency benefits

5. Design phase is the time to “think outside the box”
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https://fdec-my.sharepoint.com/personal/dsellers_facilitydynamics_com/Documents/00%20-%20FDE%20Projects/PEC%20-%20Heat%20Pump%20Series/2023-10/Day%203%20-%20New%20Construction/Refrigeration%20PIping%20Subset.pptx#80.%20Installation%20Practices

There Can Be A Lot to Coordinate

IDU Remote Controller Features and Settings
Mitsubishi PAR-UOIMEDU Remote Controller Feature

Service Menu Settings: Abbrevations are the same as for the
Basic Operation Settings

BACnet
¥ v Access

x| x X | x| x [N/A
N/A X X X X X b3 X b3

Display Format | Sound/ Energy Savings Assistant LED Tndicator Lockable Remote Controller Functions Temperature Range Limit Override

Contrast Lock State Control

Mode Settings Invalidate Basic Display Mode Bright- Switch LED

Select 1 (Note 11) Ttem Setting ness Brightness

Light Mode Color Settings | Room Temp. Settings via Space

Sensor Note 14| Temp. Bands Brightness

Protected

Controller
Temperature

inw.c. (Note 17)
v

Use Remote
Recovery Mode

(Note 8)
(Note 8)
=

8

ss &

H

&

VRF Zone Type (see Sequence)
Sensor

Operating Mode
Set Temperature
Override (Note 10)
Fan Speed
Air Direction
Louver Swing
Set Humidity
Date and Time
Date/Time Format
Schedule

Occupancy
Auto Upper
Auto Lower
Cooling Lower
Heating Upper
Heating Lower
Enable/Disable
Screen Cleaning
Filter Information
Group Settings
Telephone Number
LED Colors
Extra Occupancy Sensor, Note 1

Cooling Upper
Interlocked LOSSNAY

LOSSNAY Fan Speed
Daylight Savings Time
Temperature Unit
Touch Panel Calibration
Temp. Sensor Offset
Humidity Sensor Offset

Thermo-off
Occupany Defection

Use Remote Sensor
Use Internal Sensor
Automatically Restart
User Password

Temp. Offset

Fan Spd. Down
Operating Mode

Offset Value
Auto-Away Time
Detection Level

Date and Time

Condition
Non-use

Do not restart (Note 16)
External Static Pressure Setting,
Service Password
Show/hide Room Temp.
Cool - Return After Time
Heat - Return After Time

Enable/Disable
Room Temp.
Below Normal
Above Normal
Enable/Disable
Air Direction
Lover Swing
Auto Mode
Setback Mode
Enable/Disable
Dual Setpoint

Color During Energy Savings
Dark Detected

Cool - Temp. to Return To
Heat - Temp. fo Return To

Light Threshold Brightne

Light Detected
Operating Mode
LOSSNAY Speed
Dark Threshold
Operating Time
Single Setpoint

IDU-1.2 Room 101 - Dispatch B X X AR AR |N12[N12|N12| L |N12|N/A|N/AIN/A| L N/A| AE | AE | AE |SIE| D | D | En | °F | Sh | Dft| Dft| Dft, X 'NU|NU|NU|NU|NU| AR X (4: W) CBA RN CBA| NU | NU | NU | NU|NU | AR | AR |[CBA| E |AR| AR | AR|AR| L v L |N/AIN/AIN/A| L | AR [NU|NU |77 | 68|77 | 73|72 |68 | D |[NU/NU/NU/NU| AR |NU|AR|N/A| H | H NU| AR | AR | X AR |NU | Dft| O
DU-13 Room 100 - Dispatch A 8 | x X AR | AR |NI2|NI2|N12| L |NI2|N/AIN/AIN/A| L |N/A| AE | AE | AE |SIE| D | D | En | °F | Sh | Dft| Dft|Dft X |NU|NU|NU|NU|NU| AR b3 (CIA[E:7) cea @l cBA| NU |[NU|NU|NU [NU| AR | AR CBA| E [ AR |AR| AR |AR| L | L | U | L N/AN/AN/A L | AR |NU|NU|77 |68 | 77|73 |72 |68 | D |NU|/NU|NU|NU|AR|NU|AR|N/A| H | H | D |NU|AR|AR X AR |NU | Dft| O
DOAS 2
IDU-114 Room 124 - Break-out 2| X X AR AR |N12[N12|N12| L |N12|N/A|N/AIN/A| L N/A| AE | AE | AE |SIE| D | D | En | °F | Sh | Dft| Dft| Dft, X 'NU|NU|NU|NU|NU| AR X AR |CBA| E |AR| AR|AR|AR| L LV L |N/AIN/AIN/A| L | AR [NU|NU |77 | 68|77 | 73|72 |68 | D |[NU/NU/NU/NU| AR |NU|AR|N/A| H | H D [NU| AR AR X AR |NU | Dft| O 2
IDU-115 Room 130 - CCTV Workroom 6| x X AR | AR |NI2|NI2|N12| L |NI2|N/AIN/AIN/A| L N/A| AE | AE | AE |SIE| D | D | En | °F | Sh | Dft| Dft|Dft X |NU|NU|NU[NU|NU| AR X AR|CBA| E |AR|AR|AR|AR| L | L | U | L |N/AINAN/A| L | AR |NU|NU|77 |68 77|73 |72 68| D [NU|NU|NU|NU|AR |[NU|AR|N/A| H | H | D |NU|AR|AR X AR |NU [Dft| O
IDU-21 Room 211 - Open Office 1 X X AR AR |N12[N12|N12| L |N12|N/A|N/AIN/A| L N/A| AE | AE | AE |SIE| D | D | En | °F | Sh | Dft| Dft| Dft, X 'NU|NU|NU|NU NU| AR X AR |CBA| E |AR| AR|AR|AR| L LV L [N/AIN/AIN/A| L | AR [NU[NU |77 |68 77| 73|72 |68 | D |[NU/NU/NU/NU| AR |NU|AR|N/A| H | H D [NU|AR AR X AR |NU | Dft| O
DU-22 Room 222 - Office 3| x X AR | AR |NI2|NI2|N12| L |NI2|N/AIN/AIN/A| L N/A| AE | AE | AE |SIE| D | D | En | °F | Sh | Dft| Dft|Dft X |NU|NU|NU|NU|NU| AR b3 AR |CBA| E [AR| AR |AR|AR| L | L | U | L |N/AIN/AIN/A| L | AR |NU|NU| 77 | 68|77 |73 72| 68| D NU|NU|NU|NU| AR |NU|AR|N/A| H | H| D |NU|AR AR X AR [NU | Dft| 3 5
IDU-23 Room 212 - Breakout 1 X X AR AR |NI12|N12|N12| L |N12|N/A|N/AIN/A| L N/A| AE | AE | AE |SIE| D | D | En | °F | Sh | Dft| Dft| Dft, X 'NU|NU|NU|NU NU| AR X AR |CBA| E |AR| AR|AR|AR| L L|v L |N/AIN/AIN/A| L | AR [NU[NU |77 | 68|77 | 73|72 |68 | D |[NU/NU/NU NU| AR |NU|AR|N/A| H | H D [NU| AR AR X AR |NU | Dft| O 4
IDU-24A Room 230 - Conference 5| x X AR | AR |NI2|NI2|N12| L |NI2|N/AIN/AIN/A| L |N/A| AE | AE | AE |SIE| D | D | En | °F | Sh | Dft| Dft|Dft X |NU|NU|NU|NU|NU| AR b3 AR |CBA| E [AR| AR |AR|AR| L | L | U | L |N/AIN/AIN/A| L | AR |NU|NU| 77 | 68|77 |73 72| 68| D |NU|NU|NU|NU| AR |NU|AR|N/A| H | H| D |NU|AR AR X AR |NU | Dft| O 7
IDU-248 Room 230 - Conference 5| X X AR AR |NI12|N12|N12| L |N12|N/A|N/AIN/A| L N/A| AE | AE | AE |SIE| D | D | En | °F | Sh | Dft| Dft| Dft, X |NU|NU|NU|NU NU| AR X AR |CBA| E |AR| AR|AR|AR| L LV L [N/AIN/AIN/A| L | AR [NU[NU |77 | 68|77 | 73|72 68| D |[NU/NU/NU NU| AR |NU|AR|N/A| H | H D [NU|AR AR X AR |NU | Dft| O 7
DU-25 Room 231 - Conference 4| x X AR | AR |NI2|NI2|N12| L |NI2|N/AIN/AIN/A| L |N/A| AE | AE | AE |SIE| D | D | En | °F | Sh | Dft| Dft|Dft X |NU|NU|NU|NU|NU| AR b3 AR |CBA| E [AR| AR |AR|AR| L | L | U | L |N/AIN/AIN/A| L | AR |NU|NU| 77 | 68| 77|73 72| 68| D |NU|NU|NU|NU| AR |NU|AR|N/A| H | H| D |NU|AR AR X AR |NU | Dft| O
IDU-26 Room 210 - Breakout 4| X X AR AR |NI12|N12|N12| L |N12|N/A|N/AIN/A| L N/A| AE | AE | AE |SIE| D | D | En | °F | Sh | Dft| Dft| Dft X 'NU|NU|NU|NU NU|AR X AR |CBA| E |AR| AR|AR|AR| L LV L [N/AIN/AIN/A| L | AR [NU|NU |77 |68 77| 73|72 |68 | D |[NU/NU/NU NU| AR |NU|AR|N/A| H | H D [NU|AR | AR X AR [NU | Dft| O
DOAS 3
DU-14 Room 111 - Lobby 1] x X AR | AR [NI2|N12|N12| L [N12|N/AIN/AIN/A| L N/A| AE | AE | AE |SIE| D | D | En | °F | sh|Dft| Dft|Dft| X NU |NU|NU|NU [NU| AR X AR|cBA| E [AR|AR|AR|AR| L [ L |U| L |N/AIN/AIN/A| L | AR |NU|NU|77 | 68| 77|73 72 68| D |NU|NU|NU|NU| AR |[NU|AR|N/A| H | H | D [NU|AR| AR | X AR |NU [ Dft| 0
IDU-15 Room 140 - ERC 3 X X AR AR |NI12|N12|N12| L |N12|N/A|N/AIN/A| L [N/A| AE | AE | AE |SIE| D | D | En | °F | Sh | Dft| Dft|Dft X NU|NU|NU|NU|NU| AR X AR |CBA| E | AR AR|AR|AR| L L|v L [N/AIN/AIN/A| L | AR |NU|NU |77 |68 77| 73|72 | 68| D |[NU/NU NU NU| AR |NU|AR|N/A| H | H D [NU| AR AR X AR |NU | Dft| O 3
DU-16 Room 144 - Lunch Room 4| x X AR | AR |NI2|NI2|N12| L |NI2|N/AIN/AN/A| L |N/A| AE | AE | AE |SIE| D | D | En | °F | Sh | Dft| Dft|Dft| X NU|NU | NU[NU|NU| AR X AR|CBA| E [AR| AR |AR|AR| L | L |U | L |N/AIN/AIN/A| L | AR |NU|NU|77 | 68| 77|73 72 68| D NU|NU|NU|NU| AR |NU|AR|N/A| H | H| D |NU|[AR AR | X AR |NU [Dft| O
IDU-17 Room 145 - Shared Support 1 X X AR AR |NI12|N12|N12| L |N12|N/A|N/AIN/A| L N/A| AE | AE | AE |SIE| D | D | En | °F | Sh | Dft| Dft| Dft X NU|NU|NU|NU | NU|AR X AR |CBA| E | AR AR|AR|AR| L LV L |N/AIN/AIN/A| L | AR [NU|NU |77 |68 77| 73|72 68| D |[NU/NU NU NU| AR |NU|AR|N/A| H | H D [NU| AR AR X AR |NU | Dft| 3
DU-26 Room 210 - Breakout 4| x X AR | AR |NI2|NI2|N12| L |NI2|N/AIN/AIN/A| L N/A| AE | AE | AE |SIE| D | D | En | °F | Sh | Dft| Dft|Dft X |NU|NU|NU|NU|NU| AR X AR |CBA| E [AR | AR|AR[AR| L | L |U | L |N/AIN/AIN/A| L | AR |NU|NU|77 | 68|77 |73 72| 68| D NU|NU|NU|NU| AR |NU|AR|N/A| H | H| D |NU|[AR AR | X AR |NU [Dft| O
DU-27 Room 242 - Office. 3| x X AR | AR |NI2|N12|N12| L |N12|N/A[N/AIN/A| L |N/A| AE | AE | AE [SIE| D | D | En | °F | Sh | Dft| Dft| Dt X |NU|NU|NU|NUNU| AR b3 AR|CBA| E [AR| AR |AR[AR| L | L | U | L |N/AIN/AIN/A| L | AR |NU|NU| 77 | 68|77 |73 72|68 | D |NU|NU|NU|NU| AR |NU|AR|N/A| H | H | D |NU|AR| AR X AR|NU|Dft| 0 6
DU-28 IDU Number Not Used N/A| X X AR | AR |NI2|NI2|N12| L |NI2|N/AIN/AIN/A| L N/A| AE | AE | AE |SIE| D | D | En | °F | Sh | Dft| Dft|Dft X |NU|NU|NU|NU|NU| AR X AR |CBA| E [AR| AR |AR|AR| L | L |U | L |N/AIN/AIN/A| L | AR |NU|NU|77 | 68| 77|73 72 68| D NU|NU|NU|NU| AR |NU|AR|N/A| H | H| D |NU|AR AR | X AR |NU | Dft| O
DU-29 Room 213 - Open Office 1] x X AR | AR |NI2|N12|N12| L |N12|N/A[N/AIN/A| L |N/A| AE | AE | AE [SIE| D | D | En | °F | Sh | Dft| Dft| Dft X |NU|NU|NU|NU|NU| AR b3 AR |CBA| E | AR |AR|AR|AR| L | L | U| L |N/AINAN/A| L | AR |NU|NU| 77|68 77|73 |72 68| D [NU|NU|NU|NU| AR |NU|AR|N/A| H | H | D |NU|AR| AR X AR|NU|Dft| O
DOAS 4
DU-18 Room 150 - Womer's Locker 1] x X AR | AR [NI2|N12|N12| L [N12|N/AIN/AIN/A| L |N/A| AE | AE | AE [SIE| D | D | En | °F | sh|Dft| Dft|Dft| X NU |NU|NU | NU [NU| AR b3 EIAEYY coa @YY cBA| NU [NU|NU|NU [NU| AR | AR [cBA| E [ AR |AR|AR[AR| L | L | U |L [NAN/AN/A L |AR|NU[NU|77 |68 | 77| 73|72 |68 | D [NU/NU|NU|NU|AR|NU|AR|N/A| H | H | D [NU[AR|AR X AR |NU [ Dft| 0
DU-19 Room 152 - Women's Drying Room 10| x X AR | AR |NI2|NI2|N12| L |N12|N/A[N/AIN/A| L |N/A| AE | AE | AE |SIE| D | D | En | °F | Sh | Dft| Dft| Dft| X NU |NU|NU|NU |NU | AR X GGV caa ¥ cBA | NU [NU|NU|NU [NU| AR | AR [cBA| E | AR |AR | AR|AR| L | L | U | L NAN/AN/A L | AR [NU|NU| 77 |68 | 77|73 |72 |68 | D |NU|NU|NU|NU|AR|NU|AR|N/A| H | H | D |[NU|AR|AR X AR |NU|Dft| O
IDU-110 Room 151 - Men's Locker Room 1) x X AR | AR |NI2|NI2|N12| L |NI2|N/AIN/AN/A| L |N/A| AE | AE | AE |SIE| D | D | En | °F | Sh | Dft| Dft|Dft| X NU |NU|NU|[NU [NU| AR b3 (CIAETY o @2 CBA| NU [NU|NU|NU NU| AR | AR [CBA| E [ AR |AR | AR|AR| L | L | U | L NAN/AN/A L |AR|NU|NU| 77|68 77|73 (72|68 D |NU/NU|NU|NU|AR|NU|AR|N/A H | H | D |NU|AR|AR X AR |NU | Dft| O
IDU-111 Room 153 - Mers Drying Room 10| x X AR | AR |NI2|N12|N12| L |N12|N/A[N/A[N/A| L |N/A| AE | AE | AE |SIE| D | D | En | °F | Sh | Dft| Dft| Dft| X NU |NU|NU|NU |NU | AR X (GINCIN caAfE%Y cBA| NU | NU|NU|NU [NU | AR | AR |CBA| E | AR| AR | AR | AR| L | L | U | L [N/AN/AIN/A| L [AR|[NU|NU| 77 | 68| 77| 73| 72| 68| D |NU|NU|NU|NU|AR|NU| AR N/A| H | H | D [NU|AR|AR X AR|NU|Dft| 0
HRV-1
IDU-112 Room 161 - Warehouse Office 7| X X AR AR |NI12|N12|N12| L |N12|N/A|N/AIN/A| L [N/A| AE | AE | AE |SIE| D | D | En | °F | Sh | Dft| Dft|Dft X NU | NU | NU|NU | NU | AR X CBA [&:ZY CBA| NU |NU [NU|NU NU| AR | AR |[CBA| E | AR AR|AR|AR| L LV L [N/AIN/AIN/A| L | AR [NU[NU |77 |68 77| 73|72 |68 | D |[NU/NU/NU NU| AR |NU|AR|N/A| H | H D [NU|AR | AR X AR [NU | Dft| O
HRV-2
IDU-113 Room 164 - Tool Office 7| x X AR | AR [NI2|N12|N12| L [N12|N/AIN/AIN/A| L |N/A| AE | AE | AE [SIE| D | D | En | °F | sh|Dft| Dft|Dft| X NU |NU|NU|NU [NU| AR b3 [ERAET ce A B ceA| NU [NU | NU|NUNU| AR | AR [cBA| E [ AR|AR|AR|AR| L | L | U| L |NAN/AIN/A L [ AR|[NU|NU|77 | 68| 77| 73| 72|68 | D |NU|NU|[NU|NU|AR [NU| AR |N/A| H | H | D [NU| AR | AR | X AR |NU [ Dft| 0
HRV-3
IDU-11 Room 105 - Source Control Work Room 9| X X AR AR |NI12|N12|N12| L |N12|N/A|N/AIN/A| L [N/A| AE | AE | AE |SIE| D | D | En | °F | Sh | Dft| Dft|Dft X NU|NU|NU|NU|NU | AR X CEA [4:ZY CBA NU |NU [NU|NU NU| AR | AR |CBA| E | AR AR|AR|AR| L LV L [N/AIN/AIN/A| L | AR [NU[NU |77 | 68|77 | 73|72 |68 | D |[NU/NU/NU NU| AR |NU|AR|N/A| H | H D [NU|AR | AR X AR |NU | Dft| O
Notes

1. This is the number of supplemental occupancy sensors provided and wired fo the Siemens system to suppport IDUs that serve multiple zones.

2. This is the TDU controller location. The unit also serves Room 120 - Hallway, Room 127 - Recovery Room, Room 128 - Restroom, Room 129 - Janitor's Closet, and Room 131 - Waste/Recycle

3. This is the IDU controller location. The IDU also serves Room 141 - Break-out, Room 142 - Breakout and Room 143 - Conference.

4, This is the DU controller location. The IDU also serves Room 200 - Hallway,

5. This is the IDU controller location. The IDU also serves Room 221 - Office, Room 223 - Office, and Room 221 - Office

6. This is the IDU controller location. The IDU also serves Room 241 - Breakout, Room 243 - Office, and Room 244 - Breakout.

7. There are two IDUs serving this space controlled together by one Mutsubishi controller.

8. Replace the default password with a new password that is as requested and approved by the Owner.

9. Disabled from the service menu (vs. the user menu).

1S

Even thought there is not BACnet access to the Schedule feature of the remote controller, the Siemens system can use the other BAChet points to manage the schedule of the TDUs. See the Seauence of Operation for more information

Only one of the options can be selected. "X" = the option that should be selected for the indicated unit.

12.Tf lacked, the setting can not be adjusted from the remote controller by it still can be adjusted via the BACnet object associated with it. If it is unlocked, it can be adjusted from the remote controller as well as by the associated BACnet object and the "last command wins" (see the sequence of operation),
13. These settings only apply if the Temperature Offset mode is selected.

4. If the schedule feature is used, it is possible o set up fo 8 operating patterns for each day of a week. Each operating pattern allows you fo set the on and off fime, mode, and temperature setpoint(s)

5. LED color options are Blue, Light blue, Purple, Red, Pink, Orange, Yellow, Green, Lime, and White. The mode selection and colors are initial suggestions. Final mode selection fo drive the LEDs shall be as required by the Owner, with color selections by the Architect and Owner.

6. The design infent is for Siemens to manage the restart after a power failure fo allow it to be coordinated with the other equipment on the project.

17. The indicated values are based on the design documents. Coordinate the final setting with the testing and balaincing contractor based on their test resulfs



Bottom Lines

1. Construction observation targets are directly related to the
technology that is being applied

2. The things you are looking for during construction for a VRF
heat pump system are no different than what you would look
for if you were monitoring a built up refrigeration system
serving a cooling only load

3. For water based systems, the things you would look for are no
different than any other piping or pumping system
4. Air side targets are no different from any other air system
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Functional Testing

« Core element of any commissioning process

» Validates machinery and systems
* Do they deliver?
 Why don’t they deliver?
* Do the work well together?
 Why aren’t they working well together
« Was it big enough?
 How big should it be?



Functional Testing

« Core element of any commissioning process

« Validates machinery and systems for an NCx Process
* Do they deliver?

* Do the work well together?

« Was it big enough?



Functional Testing

« Core element of any commissioning process
» Validates machinery and systems for an EBCx Process

 Why don’t they deliver?
 Why aren’t they working well together

* How big should it be?



Functional Testing

« Core element of any commissioning process

» Validates machinery and systems
* Do they deliver?

* Do the work well together?

« Was it big enough?



Functional Testing as it Relates to the Metrics of the

Systems We Test

Physical

Distribution .
Installation

Configuration

Owner’s
Project
Requirements

Operating
Requirements

% Equipment gl

) Documents
Selections

Process System
Parameters Configuration

Heat Transfer
Equipment
Selections

Construction
Project

Assembled
Building




Functional Testing as it Relates to the Metrics of the
Systems We Test — New Construction Perspective

em Work

: Distribution
Physical
: . Equipment
Configuration ume rOJect
Selectiops (b
Owner’s
System

Project
Configuration

Requirements

Heat Transfer
Equipment

Selections



Functional Testing as it Relates to the Metrics of the
Systems We Test — Existing Building Perspective

, Distribution " “S m k
Physical \ ssembled
: . Equi pment
Configuration ion rOJect
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Functional Testing as it Relates to the Metrics of the
Systems We Test — Existing Building Perspective

et
onfiguration Selec : ( rOJect
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%
Owner’s

Project —
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Loads &
Opera Syste
W Configuration
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New Construction versus EBCx Testing

New Construction EBCx

* Trying to prove design intent * Trying to understand design intent

* Demonstrate all elements of the * Focused on certain elements of the
system meet requirements system

 Verification and quality assurance « Diagnostic and troubleshooting

Process Process



Functional Testing as it Relates to the Project Timeline



Typical New Construction Commissioning Activity

600,000 sq.ft. High Rise Basis
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Forced vs. Natural Response Testing

Forced Response Testing

| force a change and watch how the
System responds




Forced vs. Natural Response Testing

Forced Response Testing Natural Response Testing
| force a change and watch how the | observe how a system
System responds responds to the normal course
of events

I
View the video on Youtube at http://tinyurl.com/MR-1- i |
Launch




What Happened

1. Two electrical cables provided
power and telemetry up to launch

« One carried control signals —
design intent was that it would
separate first

* One carried power and
grounding signals — design
intent was that it would separate
second




What Happened

2. Separation timing was controlled
by cable length

3. Afield modification was made to
the military version of the control
cable to shorten it so it would
separate second as intended for
manned flight

4. The modification failed at lift-off
5. The power cable separated first




What Happened

6. Lack of grounding triggered a
power surge through the engine

cut off relay 'r
* Intended to trigger normal i |

engine cut off at the end of flight " T
« Shuts the engine down i

« Sends a “normal engine cut off” . -
signal to the capsule



What Happened

7. “Normal engine cutoff” should
trigger two things

« Jettison the escape tower

 Trigger explosive bolts to
separate the capsule when
the system detects no
acceleration after free-fall
started




What Happened

8. Jettisoning the escape tower
arms the parachute system

9. Since the altitude was below
10,000 feet, the parachute
deployment sequence was
triggered

10.Since there was no weight
detected on the main parachute,
the system assumed it had failed
and the reserve parachute was
deployed




Bottom Line; Sometimes Things Don’t Go as Anticipated

That doesn’t mean the test was a
failure

« Some things did work as intended :

* |ssues were identified and could be ! |

corrected P .
’ .q:

=1




An HVAC System Example

Forced Response Testing
» With it 50°F outside and
» the AHU near 100% OA,

| override the outdoor air sensor and
manually enter 100°F as the outdoor
temperature

| Observe That :

Natural Response Testing

* | pull trend data from the system for a day
when the outdoor air temperature swung
from 53 — 82°F

| Observe That
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Don’t Forget to Consider a Day with
an Extreme Diurnal Swing and its
Impact on the Performance of
Sensitive HVAC Processes

Mother Nature Writes
Great Functional Tests

St. Louis, MO, January 29, 2008
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Don’t Forget to Consider a Day with
an Extreme Diurnal Swing and its
Impact on the Performance of
Sensitive HVAC Processes

Mother Nature Writes
Great Functional Tests
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Don’t Forget to Consider a Day with
an Extreme Diurnal Swing and its
Impact on the Performance of
Sensitive HVAC Processes

Mother Nature Writes
Great Functional Tests
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Don’t Forget to Consider a Day with
an Extreme Diurnal Swing and its
Impact on the Performance of
Sensitive HVAC Processes

Mother Nature Writes
Great Functional Tests

80.00

70.00

Enthalpy Driven Change-
over to Minimum Outdoor o]
Air 5" 4000 = @ :n ——Qutdoor Temperature

= Mixed Air Temperature
: —=—Dewpoint Temperature
@
2 30.00
=
(]
=
20.00

10.00

0.00
12AM  03AM 06AM 09AM 12PM 03PM 06PM 09PM 12AM




Don’t Forget to Consider a Day with
an Extreme Diurnal Swing and its
Impact on the Performance of
Sensitive HVAC Processes

Mother Nature Writes
Great Functional Tests
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Don’t Forget to Consider a Day with
an Extreme Diurnal Swing and its
Impact on the Performance of
Sensitive HVAC Processes

Mother Nature Writes
Great Functional Tests
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Don’t Forget to Consider a Day with
an Extreme Diurnal Swing and its
Impact on the Performance of
Sensitive HVAC Processes

Mother Nature Writes
Great Functional Tests
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Don’t Forget to Consider a Day with
an Extreme Diurnal Swing and its
Impact on the Performance of
Sensitive HVAC Processes

Mother Nature Writes
Great Functional Tests
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Don’t Forget to Consider a Day with
an Extreme Diurnal Swing and its
Impact on the Performance of
Sensitive HVAC Processes

Mother Nature Writes
Great Functional Tests

St. Louis, MO, January 29, 2008
80.00

70.00

Minimum Outdoor Air
with Preheat and il
Humidification;
Freezestat trips if the f e
Preheat Process Fails

20.00
10.00

0.00
12AM  03AM 06AM 09AM 12PM 03PM 06PM 09PM 12AM




Finding Those Days

https://tinyurl.com/NOWData

" NOWData Results - Work - Microsoft Edge
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https://tinyurl.com/NOWData

" NOWData Results - Work - Microsoft Edge

() about:blank

Daily Temperature Data - St Louis Area, MO (ThreadEx)
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Jan 1 Apr 1 Ju Oct 1

@ Observed temperature range (2019) ® Normal temperature range Record Max
Record Min




Another Climate Data Resource

/[tinyurl.co

" NOWData Results - Work - Microsoft Edge

F A\ Pacific | ‘ Map Re New tz! |© Google
+ [alinttps://www.avBrdas.com/ashrae-—-engineers-notebook.htmi#TM

blank
Aquariums Building Benchmarks Cancer rity Chemistry

Other favorite:

Daily Temperature Data - St Louis Area, MO (ThreadEx)

HOME ELOG SKETCHUP MODELS USEFUL FORMULAS WHAT'S THAT THING? RESOURCES

TMI About TMY

This column explores where the weather data files N o .
l Portlan n TMY3 Data vs, Reality in 2019
i

we typically use for our energy projections come
from.

s b
b A N 0ct2022_engineers_notebook_sellers.pdf
™ .
3 i W I"‘ J v c
1 The spreadsheets below are referenced in the

MY A
AV

column and contrast different data types for the
locations indicated

atlanta_vweb.xlsm

Temperature CF)

bethel_wweb.xlsm

honolulu_vweb.xism

Inset A Inset B

pax_wwebaxlsm

phoenix_vweb.xlsm

This file contains higher resolution images of the figures 4 figures_—_final.zip
Jan1 Apr 1 Oct

Observed temperature range (2019) Normal temperature range Record Max These links will take you to some of the weather data resources behind the spreadsheet and discussions in the article
e ge (c0I3 o p ture ge eco via
Record Min

Canadian



https://tinyurl.com/TMIAboutTMY
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Testing Hierarchy;

More than Balancing Man Power

Verify Prestart Verify Control Verify Control
Checks & Wiring and Programming
Startups Calibration
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Functional Testing

One of the ways we have a dialog with the building



How Do We Dialog with a Building?

We perform a functional test
Functional test components
— Statement of purpose
— Instructions for using the test form
— Equipment requirements
— Acceptance criteria
— Precautions
— Documentation
— Procedure
— Return to Normal and Follow-up

9/1,2010



The Real Trick

Figuring out what to ask



Figuring Out What to Ask for New Construction Projects

General Goal Resources
Validate the machinery and * The design documents
systems « Manufacturers literature
1. Do they deliver? » The control system design
2. Do the work well together? narrative and logic diagrams
3. Was it big enough? This could be different from the

information on the vendor
control drawings!

* The Functional Testing Guide

* Your knowledge and experience


https://tinyurl.com/FunctionalTestingGuide
https://tinyurl.com/FunctionalTestingGuide

This, That, and the Other
Thing
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https://tinyurl.com/HeatPumpD3Glycol

Freezing Point

Ethylene Glycol Solution 10 20 30 40

(% by volume)
(°F) 25.9 17.8 7.3 -10.3

Temperature
(°C) -34 -79 -137 -235

Dynamic Viscosity - y - (centiPoise)
Temperature Ethylene Glycol Solution (% by volume)
(°F) (°C) 30 40 50 60 65

0 -17.8 b 15 22 35 45
40 44 35 48 6.5 9

80 26.7 . 17 22 2.8 3.8 45
120 489 . 1 13 15 2 2.4
160 711 15
200 93.3 0.6
240 115.6 2 2)

280 137.8 2 2)

1. below freezing point
2. above boiling point




Specific 6ravity- S6 -

Temperature Ethylene Glycol Solution (% by volume)
(°F) (°0) 40 50 60 65
-40 -40 D D 112

0 -17.8 11 11
40 44 11
80 26.7 1.09
120 489 1.077
160 711 1.062
200 93.3 1.049
240 115.6 2
280 137.8 2

1. below freezing point
2. above boiling point

Specific Heat Capacity of Ethylene Glycol based Water Solutions

Specific Heat - ¢, - of ethylene glycol based water solutions at various temperatures are indicated below

Specific Heat - ¢, - (Btu/Ib. °F)
Temperature Ethylene Glycol Solution (% by volume)
(°F) (°0) 40 50 60 65
-40 -40 D 0.68 0.703
-17.8 0.723 07
44 0.748 0.721
26.7 0.768 0.743
120 489 0.788 0.765
160 711 0.81 0.786
200 93.3 0.83 0.807
240 115.6 2 2 0.828
280 137.8 2 2 2
1Btu/(Ib,° F) = 4,186.8 J/(kg K) = 1 kcal/(kg ° C)
1. below freezing point
2. above boiling point




Boiling Points Ethylene Glycol Solutions

Boiling Point
Ethylene Glycol Solution
10 20 30 40 50 60 70 80 90 100
(% by volume)
(°F) 212 214 216 220 220 225 232 245 260 288 386
Temperature
(°C) 100 101.1 102.2 104.4 104.4 107.2 1111 118 127 142 197

Increase in Flow required for a 50% Ethylene Glycol Solution
Increase in circulated flow for 50% ethylene glycol solutions compared with clean water are indicated in the table below

Fluid Temperature Flow
Increase

(°F) (°0) (%)
40 44 22
100 378 16
140 60 15
180 82.2 14
220 1044 14

Pressure Drop Correction and Combined Pressure Drop and Volume Flow Correction for 50% Ethylene Glycol Solution

Pressure drop correction and combined pressure drop and flow increase correction for 50% ethylene glycol solutions compared with clean water are
ed in the table below

Pressure

Combined
Drop
Correction Pressure
Fluid Temperature . Drop and
with Flow
Flow Rate
Rates )
Correction
Equal
(°F) (°0) (%) (%)
40 44 45 114
100 378 10 49
140 60 0 32
180 82.2 -6 23

220 1044 -10 18




Increasing Head

» Usually not a factor in HVAC
systems if the viscosity is similar
to water between 40°F and 400°F

« Becomes a factor for 50%
ethylene glycol solution below
about 30°F

Increasing viscosity will cause
the pump curve to “droop”

Increasing Flow



Increasing Head

 Direct proportion relative to the
density of water

» Curves typically based on 85°F
water

» Multiply bhp by specific gravity
for bhp with other fluids

Increasing density
increases the brake
horsepower
requirement

Even
Higher
bhp

Lower
bhp

Increasing Flow



A Few Words About Radiant Slabs

S U/ Y70

S S B Radiant slabs give

us an attractive way
to serve space
heating loads with
low temperature
water




A Few Words About Radiant Slabs
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New Seattle Court House Heating Water System Flow Diagram

Revisions:
Revisions:

1 - Revised boiler piping to match actual factory piping.
2 - 1-24-02 - Modified arrangement of factory piping to make it clearer

Revisions: 5 - Corrected return piping at boiler return headers

Drawn by: DAS

HWO0O0

Date: April 29, 2002

Revisions:
Revisions:

3 - 12-15-03 - Updated and detailed fo include radiant panel heat exchanger and HP12,
4 - Release 3/23/04

Checked by:

Plot date: December 09, 2003
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David Sellers, Facility Dynamics Engingering, Adobe PDF
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New Seattle Court House Heating Water System Flow Diagram

Revisions: 1 - Revised boiler piping to match actual factery piping.
Revisiong: 2 - 1-24-02 - Modified arrangement of factory piping to make it clearer

Revisions: 3 - 12-15-03 - Updated and detailed to include radiant panel heat exchanger and HP12,
Revigions: 4 - Release 3/23/04

Revisions: 5 - 7-6-04 - Revised radiant panel pump connections.
Revisions: 5.1 - 7-7-04 - Revised radiant panel connection to the boiler header.

Drawn by: DAS

Date: April 29, 2002

Checked by:

Plot date: December 16, 2003}
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Making Energy Intensive HVAC Processes More Sustainable via Low
ow Temperature Ho
David Sellers, Portland Energy Conservation Inc.
W Appli jon
a te r p p I Cat I O ABSTRACT

Tom Stewart, Memorial Hospital of Carbondale
This paper looks at low temperature hot water distribution and heat recovery as an

approach that can be used in health care and laboratory applications to reduce the energy
I intensity of the HVAC reheat and preheat process. The concepts presented could easily be
applied to reheat and preheat proc s in other applications such as semiconductor and

pharmaceutical clean rooms. The paper also looks at radiant slabs as an opportunity to use
low temperature hot water for comfort heating applications in new construction. A case
study of an application in a health care environment is included.

Introduction

Current air handling system configurations, as Variable Air Volume (VAV)
systems, have led to significant reductions in HVAC energy requirements in many
applications. However, there are some applications that require precise control of the
pressure relationships between adjacent spaces and precise control of the temperature and

at the load. These requirements often eliminate the VAV approach as an option and
force designers to use a constant volume reheat system. Examples of such applications
include surgical suites, laboratorieq and clean rooms. The reheat proce
typically ver rgy siv imultaneous heating and cooling. In
addition, the large volumes of 0utd001 air required often result in significant preheat loads.

There are some characteristics of the preheat and reheat loads associated with these
processes that make them ideal low heating water temperature loads. These characteristics
are often complemented by the nature of the load served by system since they typically
represent very high internal gains, and are a source of recoverable heat. In new construction,
radiant slabs can represent an opportunity to use this recovered energy for comfort heating in
addition to the preheat and reheat processes.

The information presented in this paper is based on actual installations and experience
with low temperature hot water tems in the context of a distribution and utilization
strategy that is readily adaptable to recovered ener v of technical
considerations is followed by a case study of a low temperature hot water system at the
Memorial Hospital of Carbondale, Illinois (MHC).

Technical Discussion

The following paragraphs explore some of the technical issues associated with low
temperature hot water tems. Figure 1 illustrates a typical tem configuration as
extracted from schematic design documents for a project in the Northwest. The arr angement



https://tinyurl.com/ACEEELowTempHW
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Figure 2 - Final System Configuration at Memorial Hospital of Carbondale
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Taking a Look at Hot Water Call
Performance

& Coil Selection - C-1 — O X

Review Selection

Review the details of this selection. If evemthing is in order, press "Finish' to complete. Othenwise, press "Back' to revise your selection

Construction | Notes | Pricing |

Application Hot water Fluid I / ater
Model Hw58501009-72x396 Entenng fuid temp. [*F) 170.0
Air flow [SCFM) ' Leaving fluid temp. [*F) 130.0
Altibude [ft) 1 Fluid delta temp. [*F) 40.0
Capacity [MEH]) atal Fluid flow rate [GPM) 298
Entering air temp. ['F) B2.0 Fluid ve
Leaving air temp. [*F) 36, 2 Fluid pressure drop [ft of water)

ity [ft/ i) 4! Fluid fouling factor [k F/Btu)
Air pressure drop [in of water) 0.0 Fluid freezing temp. [°F)
Bir fouling Factor [hef®*F/Btu)

Goto Einish Cancel



Commissioning the Water
Source Heat Pump Loop




A Question For You
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Yet Another Question For You
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